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A. M. Gassous Introduction

Introduction

In this thesis we generalize known results from the theory of stochastic variational inequalities,
forward and backward as well. As a leading direction for the entire study, our problems aim
to the case when the reflection from the system is no more upon the normal direction, but it
becomes a generalized one, which will be called oblique subgradient. Even a consistent part of
the thesis is considered on the convex setup, we are also interested to analyze the problem of
oblique reflection for deterministic systems considered in a non-convex framework. These kind
of problems lead to generalized Skorohod problems and stochastic variational inequalities with
oblique subgradients in non-convex domains.

The thesis is based on the papers [22], [23], [24], [25] and it is structured into five chapters
and one Annex.

Since early sixties, research has paid increasing attention to the study of reflected stochas-
tic differential equations (for short, SDE), the reflection process being approached in different
ways. Skorohod, for instance, considers the problem of reflection for diffusion processes into a
bounded domain (see, e.g., [52]). Tanaka focuses on the problem of reflecting boundary condi-
tions into convex sets for SDEs (see [53]). In the early stages of research on the topic the trajec-
tories of the system were reflected upon the normal direction but, in 1984 Lions & Sznitman, in
the paper [30], study for the first time the following problem of oblique reflection in a domain:

(1)


dXt + dKt = f (t,Xt) dt+ g (t,Xt) dBt, t > 0,

X0 = x, Kt =

∫ t

0

1{Xs∈Bd(E)}γ(Xs)d lKls ,

where, for the bounded oblique reflection γ ∈ C2
(
Rd
)
, there exists a positive constant ν such

that 〈γ(x), n(x)〉 ≥ ν, for every x ∈ Bd(E), n(x) being the unit outward normal vector. Many
generalizations of the problem were considered, starting with the papers of Depuis & Ishi [19]
and [20] or Słomiński [51]

A more general form of the Skorohod problem was introduced in 1981 by Răşcanu; he studied
the multivalued SDEs with subdifferential operator, also called stochastic variational inequali-
ties, consistent results being provided in 1997 by Asiminoaei & Răşcanu in [1], Barbu & Răşcanu
in [4] and Bensoussan & Răşcanu in [5]. They prove the existence and uniqueness result for the
case of stochastic variational differential systems involving subdifferential operators and, even
more, they provide approximation and splitting-up schemes for this type of equations.

As the main objective of Chapter 2, we prove the existence and uniqueness of the solution for
the following stochastic variational inequality

(2)

{
dXt +H (Xt) ∂ϕ (Xt) (dt) 3 f (t,Xt) dt+ g (t,Xt) dBt, t > 0,

X0 = x0,

where B is a standard Brownian motion defined on a complete probability space and the new
quantity H(X) that appears acts on the set of subgradients; the product H (X) ∂ϕ (X) will be
called ”oblique subgradients”. For proving the existence, we will first solve the deterministic case,

1



A. M. Gassous Introduction

considering a generalized Skorohod problem with oblique reflection of the form

(3)

 x (t) +

∫ t

0

H (x (s)) dk (s) = x0 +

∫ t

0

f (s, x (s)) ds+m (t) , t ≥ 0,

dk (s) ∈ ∂ϕ (x (s)) (ds) ,

where the singular input m : R+ → Rd is a continuous function.
It worth mentioning that, until now, when dealing with BSVIs, the reflection was made upon

the normal direction at the frontier of the domain and it was caused by the presence of the sub-
differential operator of a convex lower semicontinuous function. In the main study of Chapter
3, we prove the existence and uniqueness of the solution for the more generalized BSVI with
oblique subgradients{

−dYt +H (t, Yt) ∂ϕ (Yt) (dt) 3 F (t, Yt, Zt) dt− ZtdBt, t ∈ [0, T ] ,

YT = η,

where B is a standard Brownian motion defined on a complete probability space, F is the gen-
erator function and the random variable η is the terminal data. We will split our problem into
two new ones. For the situation when we have only a time dependence for the matrix H we
obtain the existence of a strong solution, together with the existence of an absolutely continuous
feedback-subgradient process. However, for the general case of a state dependence forH we will
use tightness criteria in order to get a solution for the equation. We will put our problem into
a Markovian framework, which permits also, via the non-linear Feynman-Kaç representation
formula, to approach the viscosity solutions for semilinear parabolic PDEs. The problem con-
sists in answering in which sense can we take the limit in the sequence {(Y n, Zn, Un)}n, given
by the solutions of the approximating equations. We have to prove that it is tight in a certain
topology. Even the S−topology introduced by Jakubowski in [27] (and used for similar setups
by Boufoussi and Casteren [9] or LeJai [29]) seems suitable for our context, the regularity of the
subgradient process given by the approximating equation as part of its solution permits us to
show a convergence in the sense of the Meyer-Zheng topology.

In Chapter 4 the research focuses on the multivalued differential equations (also called vari-
ational inequalities), driven by the Fréchet subdifferential operator ∂−ϕ and perturbed by the
matrix H(X), where solution borders a domain not necessarily convex.. The non-convex prob-
lem, without the term H(X), has been solved by Marino & Tosques [32] or Rossi & Savaré [46]
and [47]. The reflected problem (ϕ = IE) with singular input dm/dt have been treated by Lions
and Sznitman in [30] or Saisho in [49].

In Chapter 5, we consider another type of non-convex Skorohod problem. More precisely,
the equation, this time driven by the Clarke subdifferential operator, is given by{

dx (t) + ∂ϕ (x (t)) dt+ ∂Cφ (x (t)) dt+G(t, x (t))dt 3 dm (t) , t ∈ [0, T ] ,

x (0) = x0.

We provide existence and uniqueness results for the solution of the above equation, then we
extend it to the stochastic case.

The last chapter, groups together, under the form of an Annex, some important results and
instruments which allow us to obtain the tasks established along the thesis.

2



A. M. Gassous Preliminaries

1 Preliminaries

1.1 Elements of convex and non-convex analysis

Convex functions
If K is a convex subset of Rd, then IK : Rd→(−∞,+∞], given by

IK(x) =

{
0, for x ∈ K,

+∞, for x ∈ Rd\K

is a convex function called the convex indicator of K.

Definition 1 A function ϕ : Rd→(−∞,+∞] is lower semicontinuous (l.s.c., for short) in x ∈ Rd if

ϕ (x) ≤ lim inf
y→x

ϕ (y) .

We say that ϕ is lower semicontinuous if it is lower semicontinuous in every x ∈ Rd.
Denote by ∂ϕ the subdifferential operator of ϕ:

∂ϕ (x)
def
=
{
x̂ ∈ Rd : 〈x̂, y − x〉+ ϕ (x) ≤ ϕ (y) , for all y ∈ Rd

}
,

and by ∇ϕε we denote the gradient of the Yosida’s regularization ϕε of the convex lower semicontinuous
function ϕ, that is

ϕε(x) = inf { 1

2ε
|z − x|2 + ϕ(z) : z ∈ Rd} =

1

2ε
|x− Jεx|2 + ϕ(Jεx),

where Jεx = x− ε∇ϕε(x).

(ρ, γ)−semiconvex functions
Let consider the Euclidian space Rd with 〈·, ·〉 the inner product and |·| the induced norm.

Definition 2 Let γ ≥ 0. A set E is γ−semiconvex if for all x ∈ Bd (E) there exists x̂ ∈ Rd\{0} such
that

〈x̂, y − x〉 ≤ γ |x̂| |y − x|2 , ∀y ∈ E.

Let ϕ : Rd → (−∞,+∞], with Dom (ϕ) =
{
v ∈ Rd : ϕ (v) < +∞

}
.

Definition 3 Define the Fréchet subdifferential of ϕ at u ∈ Rd by

∂−ϕ (u) = {u∗ ∈ Rd : lim inf
v→u;v 6=u

ϕ (v)− ϕ (u)− 〈u∗, v − u〉
|v − u|

≥ 0},

if u ∈ Dom (ϕ) , and ∂−ϕ (u) = ∅ if u /∈ Dom (ϕ) .

3
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Proposition 4 Consider u ∈ Rd and let (Jεu
def
= ) uε be a locally minimizing point (if there exists) of the

function

v −→ 1

2ε
|u− v|2 + ϕ (v) : Rd → (−∞,+∞].

Then
uε ∈ Dom

(
∂−ϕ

)
and (Aε (u)

def
= )

1

ε
(u− uε) ∈ ∂−ϕ (uε) .

Definition 5 Let ρ, γ > 0. The function ϕ : Rd → (−∞,+∞] is a (ρ, γ)−semiconvex function if
Dom (ϕ) is γ−semiconvex, Dom (∂−ϕ) 6= ∅ and, for every (u, u∗) ∈ ∂−ϕ and v ∈ Rd :

〈u∗, v − u〉+ ϕ (u) ≤ ϕ (v) + (ρ+ γ |u∗|) |v − u|2 .

Clarke subdifferential operator

Definition 6 Let V be a Banach space, f : V→ R be Lipschitz near a given point x0 ∈ V, and v a vector
in V. We denote by f o (x0, v) the generalized directional derivative of f at x0 in the direction v, defined:

f o (x0; v)
def
= lim sup

y→x0,δ↓0

f (y + δv)− f (y)

δ
,

then the Clarke subdifferential of f at x0 is defined as follows:

∂Cf (x)
def
= {ξ ∈ V ∗ : 〈ξ, v〉 ≤ f o (x0; v) for all v ∈ V} .

1.2 Elements of stochastic analysis

This section recalls some basic elements of stochastic analysis: stochastic bases, filtrations, con-
ditional expectation of a random variable, stochastic processes, stochastic integral, Itô’s formula.
Important and useful results concerning stochastic differential equations and backward stochas-
tic differential equations are also provided.

2 Stochastic variational inequalities with oblique subgradients

In this chapter we study the existence and uniqueness of the solution for the stochastic varia-
tional inequality with oblique subgradients of the following form{

dXt +H (Xt) ∂ϕ (Xt) (dt) 3 f (t,Xt) dt+ g (t,Xt) dBt, t ≥ 0,

X0 = x ∈ Dom(ϕ).

The existence result is based on a deterministic approach: a differential system with singular
input is first analyzed. After this we continue the study in the stochastic setup.

4



A. M. Gassous SVIs with oblique subgradients

2.1 A generalized Skorohod problem with oblique reflection

2.1.1 Formulation of the problem and main assumptions

We consider the deterministic generalized convex Skorohod problem with oblique subgradients:

(4)

{
dx (t) +H (x (t)) ∂ϕ (x (t)) (dt) 3 dm (t) , t > 0,

x (0) = x0,

where

(5) ϕ : Rd → ]−∞,+∞] is a proper convex l.s.c. function

and

(6)

{
(i) x0 ∈ Dom (ϕ)

def
= {x ∈ Rd : ϕ(x) <∞},

(ii) m ∈ C
(
R+;Rd

)
, m (0) = 0.

H = (hi,j)d×d ∈ C
2
b

(
Rd;Rd×d) is a matrix, such that for all x ∈ Rd,

(7)


(i) hi,j (x) = hj,i (x) , for every i, j ∈ 1, d,

(ii)
1

c
|u|2 ≤ 〈H (x)u, u〉 ≤ c |u|2 , ∀ u ∈ Rd (for some c ≥ 1).

Let [H (x)]−1 be the inverse matrix of H (x). Then [H (x)]−1 has the same properties (7) as H (x).
Denote

b = sup
x,y∈Rd, x 6=y

|H (x)−H (y)|
|x− y|

+ sup
x,y∈Rd, x 6=y

| [H (x)]−1 − [H (y)]−1 |
|x− y|

,

where |H (x)| def=
(∑d

i,j=1 |hi,j (x)|2
)1/2

.

Remark 7 A vector νx associated to x ∈ Bd (E) (we denote by Bd (E) the boundary of the set E) is
called external direction if there exists ρ0 > 0 such that x + ρνx /∈ E for all 0 < ρ ≤ ρ0. In this case, if
there exist c′ > 0 and nx ∈ NE (x) , |nx| = 1, such that 〈nx, νx〉 ≥ c′, then we have the representation

νx = M (x)nx , for all x ∈ Bd (E) ,

where the symmetric matrix

(8) M (x) = 〈νx, nx〉 Id×d − νx ⊗ nx − nx ⊗ νx +
2

〈νx, nx〉
νx ⊗ νx ,

5



A. M. Gassous SVIs with oblique subgradients

We shall call oblique reflection directions of the form νx = H (x)nx, with x ∈ Bd (E), where
nx ∈ NE (x).

If E = E ⊂ Rd and Ec = Rd \ E, then we denote, for ε > 0,

Eε = {x ∈ E : dist (x,Ec) ≥ ε} = {x ∈ E : B (x, ε) ⊂ E}

the ε−interior of E.

We impose the following supplementary assumptions:

(9)


(i) D = Dom(ϕ) is a closed subset of Rd,

(ii) ∃ r0 > 0, Dr0 6= ∅ and h0 = supz∈D dist(z,Dr0) <∞,

(iii) ∃ L ≥ 0, such that |ϕ (x)− ϕ (y)| ≤ L+ L |x− y| ,
for all x, y ∈ D.

Definition 8 Given two functions x, k : R+ → Rd, we say that dk (t) ∈ ∂ϕ (x (t)) (dt) if

(a) x, k : R+ → Rd are continuous,

(b) x (t) ∈ Dom (ϕ),

(c) k ∈ BVloc
(
[0,+∞[;Rd

)
, k (0) = 0,

(d)

∫ t

s

〈y (r)− x(r), dk (r)〉+

∫ t

s

ϕ (x (r)) dr ≤
∫ t

s

ϕ (y (r)) dr,

for all 0 ≤ s ≤ t ≤ T and y ∈ C
(
[0, T ] ;Rd

)
.

We state that

Definition 9 A pair of functions (x, k) is a solution of the Skorohod problem with H−oblique subgradi-
ents (4) (and we write (x, k) ∈ SP (H∂ϕ;x0,m)) if x, k : R+ → Rd are continuous functions and

(10)

 (i) x (t) +

∫ t

0

H (x (r)) dk (r) = x0 +m (t) , ∀ t ≥ 0,

(ii) dk (r) ∈ ∂ϕ (x (r)) (dr) .

By a direct calculus, from the above Definitions, we obtain the following inequality, very impor-
tant for the uniqueness of the solution.

If (x, k) ∈ SP (H∂ϕ;x0,m) and (x̂, k̂) ∈ SP (H∂ϕ; x̂0, m̂) , then for all 0 ≤ s ≤ t :

(11)
∫ t

s

〈
x (r)− x̂ (r) , dk (r)− dk̂ (r)

〉
≥ 0.

Proposition 10 If (x, k) ∈ SP (H∂ϕ;x0,m) then, under assumptions (6), (7), (5) and (9) there exists a
constant CT (‖m‖T ) = C (T, ‖m‖T , b, c, r0, h0), increasing function with respect to ‖m‖T , such that, for
all 0 ≤ s ≤ t ≤ T ,

(12)
(a) ||x||T + lklT ≤ CT (||m||T ),

(b) |x(t)− x(s)|+ lklt − lkls ≤ CT (||m||T )×
√
t− s+ mm(t− s),

where mm represents the modulus of continuity of the continuous function m.

6
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We renounce now at the restriction that the function f is identically 0 and we consider the
equation written under differential form

(13)

{
dx (t) +H (x (t)) ∂ϕ (x (t)) (dt) 3 f (t, x (t)) dt+ dm (t) , t > 0,

x (0) = x0,

where

(14)

(i) (t, x) 7−→ f (t, x) : R+ × Rd → Rd is a Carathéodory function
(i.e. measurable w.r. to t and continuous w.r. to x),

(ii)

∫ T

0

(
f# (t)

)2
dt <∞, where f# (t) = supx∈Dom(ϕ) |f (t, x)| .

2.1.2 The existence result

We are now able to formulate the main results of this chapter.

Theorem 11 Let the assumptions (6), (7), (5), (9) and (14) be satisfied. Then the differential equation
(13) has at least one solution in the sense of Definition 9, i.e. x, k : R+ → Rd are continuous functions
and

(15)

 (j) x (t) +

∫ t

0

H (x (r)) dk (r) = x0 +

∫ t

0

f (r, x (r)) dr +m (t) , ∀ t ≥ 0,

(jj) dk (r) ∈ ∂ϕ (x (r)) (dr) .

2.1.3 The uniqueness result

In the next step we will impose additional assumptions in order to have the uniqueness of the
solution for Eq.(13).

Proposition 12 Let the assumptions (7), (6), (5), (9) and (14) be satisfied. Assume also that there exists
µ ∈ L1

loc (R+;R+) such that, for all x, y ∈ Rd,

(16) |f (t, x)− f (t, y)| ≤ µ (t) |x− y| , a.e. t ≥ 0.

If m ∈ BVloc
(
R+;Rd

)
, then the generalized convex Skorohod problem with oblique subgradients (4)

admits a unique solution (x, k) in the space C(R+;Rd) × [C(R+;Rd) ∩ BVloc(R+;Rd)]. Moreover, if
(x, k) and (x̂, k̂) are two solutions, corresponding to m, respectively m̂, then

(17) |x (t)− x̂ (t)| ≤ CeCV (t) [|x0 − x̂0|+ lm− m̂lt] ,

where V (t) = lxlt + l x̂lt + lklt + l k̂ lt +

∫ t

0

µ (r) dr and C is a constant depending only on b and
c.

7



A. M. Gassous SVIs with oblique subgradients

Proposition 13 Under the assumptions of Proposition 12 and, for m ∈ C1
(
R+;Rd

)
, the solution

(xε)0<ε≤1 of the approximating equation

(18)
xε (t) +

∫ t

0

H (xε (s)) dkε (s) = x0 +

∫ t

0

f (s, πD (xε (s))) ds+m (t) , t ≥ 0,

dkε (s) = ∇ϕε (xε (s)) ds,

has the following properties:
• for all T > 0 there exists a constant CT , independent of ε, δ ∈]0, 1], such that

(j) sup
t∈[0,T ]

|xε (t)|2 + supt∈[0,T ] |ϕε (xε (t))|+
∫ T

0

|∇ϕε (xε (s))|2 ds ≤ CT ,

(jj) lxεl[s,t] ≤ CT
√
t− s, for all 0 ≤ s ≤ t ≤ T ,

(jjj) ‖xε − xδ‖T ≤ CT
√
ε+ δ .

•Moreover, there exist x, k ∈ C
(
[0, T ] ;Rd

)
and h ∈ L2

(
0, T ;Rd

)
, such that

lim
ε→0

kε (t) = k (t) =

∫ t

0

h (s) ds, for all t ∈ [0, T ] ,

lim
ε→0
‖xε − x‖T = 0

and (x, k) is the unique solution of the variational inequality with oblique subgradients (15).

Corollary 14 If (Ω,F ,P, {Ft}t≥0) is a stochastic basis and M a Ft−progressively measurable stochastic
process such that M· (ω) ∈ C1

(
R+;Rd

)
, P − a.s. ω ∈ Ω, then, under the assumptions of Proposition

12, P− a.s. ω ∈ Ω, the random generalized Skorohod problem with oblique subgradients: Xt (ω) +

∫ t

0

H (Xt (ω)) dKt (ω) = x0 +

∫ t

0

f (s,Xs (ω)) ds+Mt (ω) , t ≥ 0,

dKt (ω) ∈ ∂ϕ (Xt (ω)) (dt)

admits a unique solution (X· (ω) , K· (ω)) . Moreover X and K are Ft−progressively measurable stochas-
tic processes.

2.2 Stochastic variational inequalities with oblique reflection

2.2.1 Formulation of the problem and main assumptions

In this section we introduce the Stochastic Variational Inequalities (for short, SVIs) with oblique
subgradient and the definition of their strong and weak solutions. The theorem of existence and
uniqueness results are given in the next section.

Let (Ω,F ,P, {Ft}t≥0) be a stochastic basis and {Bt : t ≥ 0} a Rk−valued Brownian motion.
We will solve the following SVI with oblique reflection

(19)

 Xt +

∫ t

0

H (Xt) dKt = x0 +

∫ t

0

f (s,Xs) ds+

∫ t

0

g (s,Xs) dBs, t ≥ 0,

dKt ∈ ∂ϕ (Xt) (dt) ,

8
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where x0 ∈ Rd and

(20)

(i) (t, x) 7−→ f (t, x) : R+ × Rd → Rd and (t, x) 7−→ g (t, x) : R+ × Rd → Rd×k are
Carathéodory functions (i.e. measurable w.r. to t and continuous w.r. to x),

(ii)

∫ T

0

(f# (t))2dt+

∫ T

0

(g# (t))4dt <∞,

with f# (t)
def
= supx∈Dom(ϕ) |f (t, x)| and g# (t)

def
= supx∈Dom(ϕ) |g (t, x)|. We also add Lipschitz

continuity conditions:

(21)

∃ µ ∈ L1
loc (R+) , ∃ ` ∈ L2

loc (R+) s.t. ∀ x, y ∈ Rd, a.e. t ≥ 0,

(i) |f (t, x)− f (t, y)| ≤ µ (t) |x− y| ,

(ii) |g (t, x)− g (t, y)| ≤ ` (t) |x− y| .

Definition 15 (I) Given a stochastic basis (Ω,F ,P, {Ft}t≥0) and a Rk−valued Ft−Brownian motion
{Bt : t ≥ 0} , a pair (X,K) : Ω×[0,∞[→ Rd×Rd of continuousFt−progressively measurable stochastic
processes is a strong solution of the SDE (19) if, P− a.s. ω ∈ Ω :

(22)



i) Xt ∈ Dom (ϕ), ∀ t ≥ 0, ϕ (X·) ∈ L1
loc (R+) ,

ii) K· ∈ BVloc
(
[0,∞[ ;Rd

)
, K0 = 0,

iii) Xt +

∫ t

0

H (Xs) dKs = x0 +

∫ t

0

f (s,Xs) ds+

∫ t

0

g (s,Xs) dBs, ∀ t ≥ 0,

iv) ∀ 0 ≤ s ≤ t, ∀y : R+ → Rd continuous :∫ t

s

〈y (r)−Xr, dKr〉+

∫ t

s

ϕ (Xr) dr ≤
∫ t

s

ϕ (y (r)) dr.

That is
(X· (ω) , K· (ω)) ∈ SP (H∂ϕ;x0,M· (ω)) , P− a.s. ω ∈ Ω,

with

Mt =

∫ t

0

f (s,Xs) ds+

∫ t

0

g (s,Xs) dBs .

(II) If there exists a stochastic basis (Ω,F ,P,Ft)t≥0, a Rk−valued Ft−Brownian motion {Bt : t ≥ 0}
and a pair (X·, K·) : Ω×R+ → Rd×Rd of Ft−progressively measurable continuous stochastic processes
such that

(X· (ω) , K· (ω)) ∈ SP (H∂ϕ;x0,M· (ω)) , P− a.s. ω ∈ Ω,

then the collection (Ω,F ,P,Ft, Bt, Xt, Kt)t≥0 is called a weak solution of the SVI (19).
(In both cases (I) and (II) we will say that (X,K) is a solution of the oblique reflected SVI (19).)

We introduce the spaces that will appear furthermore in our study. Denote by Spd [0, T ], p ≥ 0,
the space of progressively measurable continuous stochastic processes X : Ω× [0, T ]→ Rd, such
that

‖X‖Sp
d

=

{
(E ‖X‖pT )

1
p
∧1
<∞, if p > 0,

E [1 ∧ ‖X‖T ] , if p = 0,

9
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where ‖X‖T = supt∈[0,T ] |Xt|. The space (Spd [0, T ] , ‖·‖Sp
d
), p≥ 1, is a Banach space and Spd [0, T ],

0 ≤ p < 1, is a complete metric space with the metric ρ(Z1, Z2) = ‖Z1 − Z2‖Sp
d

(when p = 0 the
metric convergence coincides with the probability convergence).

Denote by Λp
d×k (0, T ) , p ∈ [0,∞), the space of progressively measurable stochastic processes

Z : Ω× (0, T )→ Rd×k such that

‖Z‖Λp =



[
E
(∫ T

0

‖Zs‖2ds

) p
2

] 1
p
∧1

, if p > 0,

E

[
1 ∧

(∫ T

0

‖Zs‖2ds

) 1
2

]
, if p = 0.

The space (Λp
d×k (0, T ) , ‖·‖Λp), p ≥ 1, is a Banach space and Λp

d×k (0, T ), 0 ≤ p < 1, is a complete
metric space with the metric ρ(Z1, Z2) = ‖Z1 − Z2‖Λp .

2.2.2 Existence and uniqueness of the solution

In this section we give an existence and uniqueness result for the solution of the stochastic vari-
ational inequality with oblique subgradients introduced before. Theorem 16 deals with the exis-
tence of a weak solution in the sense of Definition 15, while Theorem 17 gives the uniqueness of
a strong solution.

Theorem 16 Let the assumptions (7), (5), (9) and (20) be satisfied. Then the SVI (19) has at least one
weak solution (Ω,F ,P,Ft, Bt, Xt, Kt)t≥0 .

Proof. The proof is divided in three main steps. We construct a sequence of approximating
equations, whose unique sequence of solutions is tight in C([0, T ] ;R2d+1), which permits us to
make use of the Prohorov and Skorokod theorems. Finally, we pass to the limit in order to obtain
a weak solution for the SVI (19). For the weak existence we will work in the framework of the
Meyer-Zheng topology.

Theorem 17 If the assumptions (7), (5), (9), (20) and (21) are satisfied, then the SVI (19) has a unique
strong solution (X,K) ∈ S0

d × S0
d .

Proof. For the proof of the above result it is sufficient to prove the pathwise uniqueness, since the
existence of a weak solution and the pathwise uniqueness implies the existence of a strong solution.

2.2.3 A particular case of a perturbed convex set

We consider, as a particular case, the situation when we have, as the subdifferential operator, the
subdifferential of the convex indicator of a time perturbed set and we prove that we can reduce
the classical problem of SVIs with normal reflection to a SVIs with oblique subgradients, but
with a fixed convex set which provides the multivalued operator.

10
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Example 18 Consider the stochastic variational inequality

(23)

{
dXt + ∂IL(t)E (Xt) (dt) 3 f (t,Xt) dt+ g (t,Xt) dBt, t ≥ 0,

X0 = x0,

where E ⊂ Rd is a nonempty closed convex set, L : R+ → R+ is a continuous function or L = (li,j)d×d ∈
C2
b

(
R+;Rd×d) is a symmetric matrix satisfying the conditions imposed to H in the previous results. We

denote Yt = [H (t)]−1Xt and we obtain, by the regularity of L, that Y must be a solution of the following
SVI

(24)

{
dYt + ([L (t)]−1)2∂IE (Yt) (dt) 3 f̃(t, Yt)dt+ g̃ (t, Yt) dBt, t ≥ 0,

Y0 = [L (0)]−1 x0,

where f̃(t, Yt) = [L (t)]−1 (f (t, L (t)Yt)− L′ (t)Yt) and g̃ (t, Yt) = [L (t)]−1 g (t, L (t)Yt). For the trans-
formed SVI (24) we can apply previous results in order to obtain the existence and the uniqueness of a
strong solution.

3 Backward stochastic variational inequalities with oblique sub-
gradients

This chapter is dedicated to the study of backward stochastic variational inequalities with oblique
reflection, following the same framework constructed in the previous chapter. In fact, we con-
sider two different problems, which differ through the form of the matrix H . Starting at a certain
point, this difference will lead the proof of the existence of a solution on two different paths.
First, we present the hypothesis imposed on the coefficients and we formulate the main results
of our study on this topic.

3.1 Setting the problem

Let T > 0 be fixed and consider the backward stochastic variational inequality with oblique re-
flection (for short, BSV I (H (t, y) , ϕ, F ), BSV I (H (t) , ϕ, F ) or, respectively, BSV I (H (y) , ϕ, F )
if the matrix H depends only on the time or, respectively, on the state of the system), P− a.s.,

(25)

 Yt +

∫ T

t

H (s, Ys) dKs = η +

∫ T

t

F (s, Ys, Zs) ds−
∫ T

t

ZsdBs, t ∈ [0, T ] ,

dKs ∈ ∂ϕ (Ys) (ds) ,

where

(H1) (Ω,F ,P, {Ft}t≥0) is a stochastic basis and {Bt : t ≥ 0} is a Rk−valued Brownian motion.
Moreover, the native filtration on Ω is given by Ft = FBt = σ({Bs : 0 ≤ s ≤ t}) ∨N .

11
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(H2) H(·, ·, y) : Ω × R+ → Rd×d is progressively measurable for every y ∈ Rd; there exists
Λ, b > 0 such that P−a.s. ω ∈ Ω, H = (hi,j)d×d ∈ C

1,2
(
R+×Rd;Rd×d) and, for all t ∈ [0, T ]

and y, ỹ ∈ Rd, P−a.s. ω ∈ Ω,

(26)



(i) hi,j (t, y) = hj,i (t, y) , ∀i, j ∈ 1, d,

(ii) 〈H (t, y)u, u〉 ≥ a |u|2 , ∀u ∈ Rd (for some a ≥ 1),

(iii) |H (t, ỹ)−H (t, y) |+ | [H (t, ỹ)]−1 − [H (t, y)]−1 | ≤ Λ|ỹ − y|,

(iv) |H (t, y) |+ | [H (t, y)]−1 | ≤ b,

where |H (x)| def=
(∑d

i,j=1 |hi,j (x)|2
)1/2

.

(H3) the function

ϕ : Rd → (−∞,+∞] is a proper lower semicontinuous convex function.

The generator function F (·, ·, y, z) : Ω × [0, T ] → Rd is progressively measurable for every
(y, z) ∈ Rd × Rd×k and there exist L, `, ρ ∈ L2 (0, T ;R+) such that

(H4)



(i) Lipschitz conditions: for all y, y′ ∈ Rd, z, z′ ∈ Rd×k, dP⊗ dt− a.e. :

|F (t, y′, z)− F (t, y, z)| ≤ L (t) |y′ − y|,

|F (t, y, z′)− F (t, y, z)| ≤ ` (t) |z′ − z|;

(ii) Boundedness condition:

|F (t, 0, 0)| ≤ ρ (t) , dP⊗ dt− a.e..

We introduce now the notion of solution for Eq.(25). We will study two types of solution, given
by the following Definitions. For the case H (t, y) ≡ H (t) we obtain the existence of a strong
solution while, for the general case H (t, y) we obtain a weak solution for Eq.(25).

Definition 19 Given (Ω,F ,P, {Ft}t≥0) a fixed stochastic basis and {Bt : t ≥ 0} a Rk−valued Brownian
motion, we state that a triplet (Y, Z,K) is a strong solution of the BSV I (H (t) , ϕ, F ) if (Y, Z,K) : Ω×
[0, T ]→ Rd×Rd×k×Rd are progressively measurable continuous stochastic processes and P−a.s. ω ∈ Ω, Yt +

∫ T

t

H (s) dKs = η +

∫ T

t

F (s, Ys, Zs) ds−
∫ T

t

ZsdBs, ∀t ∈ [0, T ] ,

dKs ∈ ∂ϕ (Ys) (ds) .

Consider now the case when the matrixH depends on the state of the system. We can reconsider
the backward stochastic variational inequality with oblique reflection in the following manner,
P− a.s. ω ∈ Ω,

(27)

 Yt +

∫ T

t

H (s, Ys) dKs = η +

∫ T

t

F (s, Ys, Zs) ds− (MT −Mt) , ∀t ∈ [0, T ] ,

dKs ∈ ∂ϕ (Ys) (ds) ,

12
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whereM is a continuous martingale (possible with respect to its natural filtration if not any other
filtration available). If

H (ω, t, y) ≡ H (t, y) and F (ω, t, y, z) ≡ F (t, y, z)

we introduce the notion of weak solution of the equation.

Definition 20 If there exists a probability space (Ω,F ,P) and a triplet (Y,M,K) : Ω × [0, T ] → (Rd)3

such that

(a) M is a continuous martingale with respect to the filtration given, for ∀t ∈ [0, T ] , by
Ft

def
= FY,Mt = σ({Ys,Ms : 0 ≤ s ≤ t}) ∨N ,

(b) Y,K are càdlàg stochastic processes, adapted to {Ft}t≥0,
(c) relation (27) is verified for every t ∈ [0, T ] , P− a.s. ω ∈ Ω,

the collection (Ω,F ,P,Ft, Yt,Mt, Kt)t∈[0,T ] is called a weak solution of the BSV I (H (y) , ϕ, F ).

In both cases given by Definition 19 or Definition 20 we will say that (Y, Z,K) or (Y,M,K) is a
solution of the considered oblique reflected backward stochastic variational inequality.

3.2 Main results - the common core

3.2.1 Formulation of the existence and uniqueness theorems

Denote

νt =

∫ t

0

L (s)
[
EFs |η|p

]1/p and θ = sup
t∈[0,T ]

(
EFt |η|p

)1/p
.

Theorem 21 Let p > 1 and the assumptions (H1 −H4) be satisfied. If

(28) Eeδθ + E |ϕ (η)| <∞

for all δ > 0 then the BSV I (H (t) , ϕ, F ) admits a unique strong solution (Y, Z,K) ∈ S0
d [0, T ] ×

Λ0
d×k (0, T )× S0

d [0, T ] such that, for all δ > 0,

(29) E sup
s∈[0,T ]

eδpνs |Ys|p + E
(∫ T

0

e2δνs |Zs|2 ds
)p/2

<∞.

Moreover, there exists a positive constant, independent of the terminal time T , C = C(a, b,Λ) such that,
P− a.s. ω ∈ Ω,

|Yt| ≤ C
(

1 +
[
EFt |η|p

]1/p)
, for all t ∈ [0, T ]

and the process K is absolutely continuous and, therefore, it can be represented as

Kt =

∫ t

0

Usds,

where

E
∫ T

0

|Ut|2dt+ E
∫ T

0

|Zt|2dt ≤ C

(
E|η|2 + E |ϕ (η)|+ E

∫ T

0

|F (t, 0, 0)|2dt
)
.

13
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Theorem 22 Let the assumptions (H2 −H4) be satisfied. Then the BSV I (H (t, y) , ϕ, F ) (25) admits a
unique weak solution (Ω,F ,P,Ft, Bt, Yt,Mt, Kt)t∈[0,T ].

The proofs of the above results are detailed in the next sections. Section 3.2.2 deals with a
sequence of approximating equations and apriori estimates of their solutions. The estimates will
be valid for both cases covered by Theorem 21 and Theorem 22. After this, the proof is split
between Section 3.3 and Section 3.4, each one being dedicated to the particularities brought by
Theorem 21 and Theorem 22.

3.2.2 Approximating problems and apriori estimates

We start simultaneously the profs of Theorem 21 and Theorem 22 by obtaining some apriori
estimates for the solutions of the approximating equations. Let 0 < ε ≤ 1. Consider the approxi-
mating BSDE

(30) Y ε
t +

∫ T

t

H (s, Y ε
s )∇ϕε (Y ε

s ) ds = η +

∫ T

t

F (s, Y ε
s , Z

ε
s) ds−

∫ T

t

Zε
sdBs, ∀t ∈ [0, T ] .

and we obtain the estimates given by the following result.

Lemma 23 Consider the approximating BSDE (30), with its solution (Y ε, Zε) and denoteU ε = ∇ϕε(Y ε).
There exists a positive constant C = C(a, b,Λ, l, L(·)), independent of ε, such that

(31) E sup
s∈[0,T ]

|Y ε
s |

2 + E
∫ T

0

(|U ε
r |

2 + |Zε
r |

2)dr ≤ C

[
E |η|2 + Eϕ (η) + E

∫ T

0

|F (r, 0, 0)|2 dr
]
.

3.3 Strong existence and uniqueness for H(t, y) ≡ Ht

Using the results given by Lemma 23 we continue the proof of the existence of a strong solution.
Under the assumptions of Step 3 (Section 3.2.2) we prove that {Y ε : 0 < ε ≤ 1} is a Cauchy se-
quence. With standard arguments, passing to the limit in the approximating equation (30) we
infer that

Yt +

∫ T

t

HsUsds = η +

∫ T

t

F (s, Ys, Zs)ds−
∫ T

t

ZsdBs, ∀t ∈ [0, T ] .

Moreover, since∇ϕε(x) ∈ ∂ϕ(Jεx) we have, on the subsequence εn,

E
∫ T

0

〈∇ϕεn(Y εn
t ), vt − Y εn

t 〉 dt+ E
∫ T

0

ϕ(Jεn(Y εn
t ))dt ≤ E

∫ T

0

ϕ(vt)dt,

for every progressively measurable continuous stochastic process v. Hence Us ∈ ∂ϕ(Ys) for every
s ∈ [0, T ] , P− a.s. ω ∈ Ω and we can conclude that the triplet (Y, Z,K) is a strong solution of the
BSV I (H (t) , ϕ, F ). The uniqueness of the solution is also proved.

14
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3.4 Weak existence for H(t, y)

Allowing the dependence on Y we will situate ourselves in a Markovian framework and one
will use tightness criteria in order to prove the existence of a weak solution for the problem
BSV I (H (t, y) , ϕ, F ). First let b : [0, T ] × Rk → Rk, σ : [0, T ] × Rk → Rk×k be two measur-
able functions satisfying the classical conditions, which imply the existence of a non-exploding
solution for the following SDE

(32) X t,x
s = x+

∫ s

t

b(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dBr, t ≤ s ≤ T.

According to Friedmann [21] it follows that, for every (t, x) ∈ [0, T ]×Rk, the equation (32) admits
a unique solution X t,x. Moreover, for p ≥ 1, there exists a positive constant Cp,T such that

(33)

{
E sups∈[0,T ] |X t,x

s |p ≤ Cp,T (1 + |x|p) and

E sups∈[0,T ] |X t,x
s −X t′,x′

s |p ≤ Cp,T (1 + |x|p)(|t− t′|p/2 + |x− x′|p),

for all x, x′ ∈ Rk and t, t′ ∈ [0, T ].
Let consider the continuous generator function F : [0, T ] × Rk × Rd → Rd and assume there

exist L ∈ L2 (0, T ;R+) such that, for all t ∈ [0, T ] and x ∈ Rk,

(H ′4) |F (t, x, y′)− F (t, x, y)| ≤ L (t) |y′ − y|, for all y, y′ ∈ Rd,

Given a continuous function g : Rk → Rd, satisfying a sublinear growth condition, consider now
the BSV I (H (t, y) , ϕ, F )

(34)

 Y t,x
s +

∫ T

s

H(r, Y t,x
r )dKt,x

r = g(X t,x
T ) +

∫ T

s

F (r,X t,x
r , Y t,x

r )dr −
∫ T

s

Zt,x
r dBr, t ≤ s ≤ T,

dKt,x
r ∈ ∂ϕ(Y t,x

r ) (dr) , for every r.

Assume also that all hypothesis given by (H2) still hold for the deterministic matrix H : [0, T ]×
Rd → Rd×d.

The solution will be constructed on the Skorohod space D([0, T ] ;Rm) of càdlàg functions
y : [0, T ] → Rm (i.e. right continuous and with left-hand side limit). It can be shown (see
Billingsley [7]) that, although D([0, T ] ;Rm) is not a complete space with respect to the Skoro-
hod metric, there exists a topologically equivalent metric with respect to which it is complete
and that the Skorohod space is a Polish space. The space of continuous functions C([0, T ] ;Rm),
equipped with the supremum norm topology is a subspace ofD([0, T ] ;Rm); the Skorohod topol-
ogy restricted to C([0, T ] ;Rm) coincides with the uniform topology. We will use onD([0, T ] ;Rm)
the Meyer-Zheng topology, which is the topology of convergence in measure, weaker than the
Skorohod topology.

For any fixed n ≥ 1 consider the following approximating equation, which is in fact BSDE
(30) from Section 3, adapted to our new setup. We have, P− a.s. ω ∈ Ω,

(35) Y n
t +

∫ T

t

H (s, Y n
s )∇ϕ1/n (Y n

s ) ds = g(X t,x
T ) +

∫ T

t

F (s,Xs, Y
n
s ) ds−

∫ T

t

Zn
s dBs, ∀t ∈ [0, T ] .
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The estimations obtained in Section 3.2.2 apply also to the triplet (Y n, Zn,∇ϕ1/n (Y n)). In the

sequel we will employ the notations Mn
t =

∫ t

0

Zn
s dBs and Kn

t =

∫ t

0

∇ϕ1/n (Y n
s ) ds. Our goal is

to prove the tightness of the sequence {Y n,Mn}n with respect to the Meyer-Zheng topology. By
passing to the limit in the approximating equations we will conclude the existence of a weak
solution.

4 Variational inequalities with oblique subgradients on non-
convex domains

In this chapter we study a deterministic differential inclusion of the type

dx(t) +H (x (t)) ∂−ϕ (x (t)) (dt) 3 g (t) , a.e. t ∈ [0, T ] , x (0) = x0 ∈ int (Dom (ϕ)) ,

where ∂−ϕ is the Fréchet subdifferential of ϕ introduced in Section 1.1.2. The effect produced by
the matrix H consists in the generation of an oblique reflection, in the manner already discussed
in Chapter 2 and Chapter 3. First, in Section 4.1, we present some additional properties of the
(ρ, γ)−semiconvex functions and we will obtain fine estimations which will prepare the frame-
work for the approximating setup. In Sections 4.2.1 and 4.2.2 we present the main achievements
of this chapter.

4.1 Preliminaries, notations and hypothesis

Theorem 24 Let ε0 > 0 and ϕ : Rd → (−∞,+∞] be a lower semicontinuous (l.s.c.) function such that
Dom (ϕ) 6= ∅ and

m0 = inf

{
1

2ε0

|v|2 + ϕ (v) : v ∈ Rd

}
> −∞.

Let u ∈ Rd and ε ∈ (0, ε0) be fixed. Then for every r > 0 there exists û ∈ Dom (ϕ) and u ∈ B (u, r) ={
h ∈ Rd : |h− u| < r

}
such that

j)
1

2ε
|u− û|2 + ϕ (û) = inf

v∈Rd

{
1

2ε
|u− v|2 + ϕ (v)

}
jj)

(36)
1

2ε
|u− û|2 + ϕ (û) ≤ ϕ (u) .

Moreover, û ∈ Dom (∂−ϕ) and
1

ε
(u− û) ∈ ∂−ϕ (û).
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Proposition 25 Let ϕ : Rd → (−∞,+∞] be a (ρ, γ)−semiconvex function. There exists a ∈ R such
that

(37) ϕ (v) + a |v|2 + a ≥ 0, ∀v ∈ Rd.

Moreover, if we consider 0 < ε < 1
2a

arbitrary fixed and K is a closed subset of Rd then, for every u ∈ K
there exists û ∈ K ∩Dom (ϕ) such that

(38)
1

2ε
|u− û|2 + ϕ (û) = inf

v∈K∩Dom(ϕ)

{
1

2ε
|u− v|2 + ϕ (v)

}
def
= ϕε(u;K).

The following result presents a Lipschitz property for Jε, which requires a boundedness con-
ditions for Aε. We will see later that, imposing some additional assumptions on ϕ that condition
can be overcome.

Lemma 26 Let ϕ : Rd → (−∞,+∞] be a proper l.s.c. (ρ, γ)−semiconvex function, S > 0 and
0 < ε < 1

2(ρ+γS)
. Let u, v ∈ Rd and consider the pairs (Jεu,Aε (u)) , (Jεv, Aε (v)) ∈ ∂−ϕ. If

max{|Aε (u)| , |Aε (v)|} ≤ S then

(39) |Jεu− Jεv| ≤
1

1− 2ε (ρ+ γS)
|u− v| .

In the sequel we will impose some additional hypothesis on the (ρ, γ)−semiconvex function
ϕ. We assume that

(40)


i) ϕ is locally bounded on int (Dom (ϕ)) ,

ii) ∂−ϕ (u) 6= ∅, ∀u ∈ int (Dom (ϕ)) .

iii) Dom (ϕ) = int (Dom (ϕ)) .

Remark that, according to (40−iii)), we have the following equalities of sets: int (Dom (ϕ)) =

int (Dom (∂−ϕ)) and Dom (ϕ) = Dom (∂−ϕ). Also, ∇−ϕ : int (Dom (ϕ)) −→ Rd is bounded on
bounded sets.
As consequence, the following important result takes place.

Proposition 27 Let ϕ : Rd → (−∞,+∞] be a (ρ, γ)−semiconvex function. If we consider u0 ∈
Dom (ϕ) , r0,M0 > 0, satisfying ϕ (u0 + r0v) ≤ M0, ∀ |v| ≤ 1, then there exist ρ0 > 0 and b ≥ 0 such
that

(41) ρ0|û| ≤ 〈û, u− u0〉+ b+ b(1 + |û|)|u− u0|2, ∀(u, û) ∈ ∂−ϕ.

Moreover there exist M ≥ 0 and δ0 ∈ (0, r0] such that

(42) |û| ≤M, ∀u ∈ B (u0, δ0) ⊂ Dom (ϕ) and û ∈ ∂−ϕ (u) .
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Theorem 28 Let ϕ : Rd → (−∞,+∞] be a proper l.s.c. (ρ, γ)−semiconvex function. Consider u0 ∈
Dom (∂−ϕ), r0,M0 > 0, satisfying ϕ (u0 + r0v) ≤M0, ∀ |v| ≤ 1 and let δ0 ∈ (0, r0] be such that

B (u0, δ0) ⊂ int (Dom (ϕ))

and (42) takes place. Consider u ∈ B (u0, δ0). For ε > 0 small enough and independent of u, the function
v −→ ϕ (v) + 1

2ε
|u− v|2 admits an unique minimizing point uε(

def
= Jεu) in B (u0, δ0). Moreover, if we

denote
ϕε (u) = ϕε (u, δ0, u0)

def
= inf

v∈B(u0,δ0)

{
1

2ε
|u− v|2 + ϕ (v)

}
,

then ϕε ∈ C1 (B (u0, δ0)) and ∇ϕε (u) = Aε (u) =
1

ε
(u− Jεu) ∈ ∂−ϕ (Jεu).

4.2 Multivalued differential equations with oblique subgradients

4.2.1 Formulation of the problem

Consider the following Cauchy problem

(43)
{
x′ (t) +H (x (t)) ∂−ϕ (x (t)) 3 g (t) , a.e. t ∈ [0, T ]
x (0) = x0 ∈ int (Dom (ϕ)) ,

where g ∈ L1
(
[0, T ] ;Rd

)
, ϕ : Rd → ]−∞,+∞] is a proper, lower semicontinuous, (ρ, γ)−semi-

convex function such that there exist the positive constants C1, C2 :

(Hϕ) : |ϕ (x)− ϕ (x)| ≤ C1 + C2 |x− y| , ∀x, y ∈ Dom (ϕ) ,

H = (hi,j)d×d ∈ C
2
b

(
Rd;Rd×d) is a matrix, such that, for all x ∈ Rd,

(HH) :


i) hi,j (x) = hj,i (x) , ∀ i, j ∈ 1, d,

ii)
1

cH
|u|2 ≤ 〈H (x)u, u〉 ≤ cH |u|2 , ∀u ∈ Rd (for some cH ≥ 1).

Definition 29 A pair (x, h) of functions x, h : [0, T ] −→ Rd is a solution of equation (43) (and we will
write (x, h) ∈ GR (H∂−ϕ;x0, g)) if

(44)


i) x (t) ∈ Dom (ϕ), ∀t ≥ 0, x ∈ C([0, T ] ;Rd) and h, ϕ (x) ∈ L1

(
0, T ;Rd

)
,

ii) x (t) +

∫ t

0

H (x (r))h (r) dr = x0 +

∫ t

0

g (r) dr, ∀t ∈ [0, T ] ,

iii) h (t) ∈ ∂−ϕ (x (t)) , a.e. t ∈ [0, T ] .

Remark 30 Condition (44−iii) is equivalent with∫ t

s

〈y (r)− x (r) , h (r)〉 dr +

∫ t

s

ϕ (x (r)) dr ≤
∫ t

s

ϕ (y (r)) dr(45)

+

∫ t

s

|y (r)− x (r)|2 (ρ+ γ |h (r)|) dr,

for all 0 ≤ s ≤ t ≤ T and y ∈ C([0, T ] ;Rd).
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4.2.2 Existence and uniqueness result

Lemma 31 If h (t) ∈ ∂−ϕ (x (t)) and ĥ (t) ∈ ∂−ϕ (x̂ (t)) then, for all 0 ≤ s ≤ t we have

(46)
∫ t

s

|x (r)− x̂ (r) |2
(
2ρ+ γ |h (r)|+ γ|ĥ (r) |

)
dr +

∫ t

s

〈
x (r)− x̂ (r) , h (r)− ĥ (r)

〉
dr ≥ 0.

Theorem 32 Let the assumptions (Hϕ) and (HH) be satisfied. The generalized non-convex differ-
ential system with oblique subgradients (43) admits a unique solution (x, h). Moreover, if (x, h) ∈
GR (H∂−ϕ;x0, g) and (x̂, ĥ) ∈ GR (H∂−ϕ;x0, ĝ) then

(47) |x (t)− x̂ (t) | ≤ CeCU(t)

[
|x0 − x̂0|+

∫ t

0

|g (r)− ĝ (r) |dr
]
,

where U (t) =
∫ t

0
|x (r) |dr +

∫ t
0
|x̂ (r) |dr + (1 + γ)

∫ t
0
|h (r)| dr + (1 + γ)

∫ t
0
|ĥ (r) |dr + 2ρt and C is a

constant depending only on LH and cH .

5 A Skorohod problem driven by the Clarke subdifferential;
applications to SDEs

5.1 Preliminaries and hypothesis

We recall the following definitions:

Definition 33 A multivalued operator G from a topological space U to a topological space V is said to be
upper semicontinuous if:

- for all u ∈ U, Gu is a compact subset of V;
- for all u ∈ U, for every V ∈ VV (Gu) , there is a U ∈ VU (u) such that for all z ∈ U we have Gz ⊂ V,
where VX (x) denote the set of neighborhoods of x in X.

Definition 34 A multivalued operator Θ : U ⇒ V is said to be measurable if
Θ−V

def
= {u ∈ U : Θ (u) ∩ V 6= ∅} is measurable, for every closed V ⊂ V.

Consider the multivalued equation

(48)

{
dx (t) + ∂ϕ (x (t)) dt+ ∂Cφ (x (t)) dt+G(t, x (t))dt 3 dm (t) , t ∈ [0, T ] ,

x (0) = x0 ∈ D (∂Cφ) ∩D (ϕ),

where ∂Cφ is the Clarke subdifferential operator associated to the function φ, ∂ϕ is the classi-
cal subdifferential operator associated to a convex, l.s.c function ϕ, G (t, x) is a time dependent
multivalued operator on Rd and m : [0, T ]→ Rd is a continuous function.

We suppose that there exist the positive constants c and M such that

19



A. M. Gassous A Skorohod problem driven by Clarke subdifferential and applications to SDEs

(49)
i) |∂Cφ (x)| ≤ c(1 + |x|), for all x ∈ Rd;

ii) ∀x1, x2 ∈ Rd, ∀y1 ∈ ∂Cφ (x1) , ∀y2 ∈ ∂Cφ (x2) , 〈x1 − x2, y1 − y2〉 ≥ −M |x1 − x2|2

and

(50)
{

i) ϕ : Rd → ]−∞,+∞] is a proper convex l.s.c. function
ii) int (Dom (ϕ)) 6= ∅.

Definition 35 A multivalued mapping G : [0, T ] ×D (ϕ) ⇒ Rd is said to satisfy conditions (R), if the
following conditions hold:
(a) for almost all t in [0, T ] , the mapping x → G (t, x) is multivalued u.s.c. from D (ϕ) to Rd, with
convex values.
(b) for all x ∈ D (ϕ), the mapping t → G (t, x) is multivalued measurable from [0, T ] to Rd (i.e., for all
χ ∈ Rd and all x ∈ D (ϕ), the function υx,χ : t→ sup {〈y, χ〉 : y ∈ G (t, x)} is measurable on [0, T ]).
(c) there exist two functions γ and δ from Lploc (0, T ), with 1 ≤ p ≤ ∞, such that for almost all t ∈ [0, T ]

and all x ∈ D (ϕ),
sup

y∈G(t,x)

|y| ≤ γ (t) |x|+ δ (t) .

We now suppose that the multifunction G : I × D (ϕ) → Rd satisfies both the condition (R)
and the following one-sided Lipschitz continuous condition: there exists η ∈ L1 ([0, T ] ,R+) such
that, for every x, y ∈ Rd, t ∈ [0, T ] and u ∈ G (t, x) , v ∈ G (t, y) we have

(51) 〈v − u, y − x〉 ≥ −η (t) |x− y|2 .

Definition 36 Given two functions x, l : [0, T ] → Rd and a locally Lipschitz function f , we say that
dl (t) ∈ ∂Cf (x (t)) (dt), if for all T ≥ 0,

(52)

(a) x, l : [0, T ]→ Rd are continuous,

(b) l ∈ BVloc
(
R+;Rd

)
, l (0) = 0,

(c)

∫ t

s

〈v (r) , dl (r)〉 ≤
∫ t

s

f o (x (r) , v (r)) dr,

for all 0 ≤ s ≤ t ≤ T and v ∈ C
(
[0, T ] ;Rd

)
.

Definition 37 A triplet of function (x, j, l) is called a solution of the evolution inclusion with Clarke
subdifferential (48) if x, j, l : [0, T ]→ Rd are continuous, and

i) x (t) ∈ D (ϕ),∀t ≥ 0,
ii) j, l ∈ BV

(
[0, T ] ;Rd

)
, with j (0) = l (0) = 0,

iii) x (t) + j (t) + l (t) +

∫ t

0

β (s) ds = x0 +m (t) ,

iv) dj (t) ∈ ∂ϕ (x (t)) (dt), dl (t) ∈ ∂Cφ (x (t)) (dt) and β (t) ∈ G(t, x (t)).
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5.2 Existence and uniqueness results

In order to prove the existence and uniqueness of the solution for the multivalued equation (48),
we first prove the following auxiliary theorem.

Theorem 38 Let G be a time dependent multivalued operator on Rd satisfying conditions (R), ϕ satisfy-
ing (50) and m ∈ M (M is a bounded and equicontinuous subset of C

(
[0, T ] ;Rd

)
). Then the following

variational inequality admits a solution (x, j) on [0, T ] :

(53) dx (t) + ∂ϕ (x (t)) dt+G (t, x (t)) dt 3 dm (t) , x (0) = x0.

More precisely:
(1) there exists a measurable selection β : [0, T ]→ Rd such that β (t) ∈ G (t, x (t)) almost everywhere in
[0, T ];
(2) (x, j) is a solution of dx (t) + ∂ϕ (x (t)) dt 3 dm (t)− β (t) dt, x (0) = x0.

The main result of this section is given below.

Theorem 39 If φ satisfies the assumptions (49), ϕ satisfies (50) and G verifies condition (R) and (51),
there exists at least one solution (x, j, l) for the multivalued equation (48). Moreover, ifM is a bounded
and equicontinuous subset of C

(
[0, T ] ;Rd

)
, then there exists a positive constant C0,M such that:

1. If m ∈M and (x, j, l) is a solution of (48), then

(54) ‖x‖2
T + ljlT + lllT ≤ C0,M(1 + |x0|2).

2. If (x1, j1, l1) , (x2, j2, l2) are two solutions of (48) corresponding to the singular inputs m1, m2 and,
respectively to the initial data x1,0, x2,0, then

(55) ‖x1 − x2‖ ≤ C0,M (1 + |x1,0|+ |x2,0|) (|x1,0 − x2,0|+ ‖m1 −m2‖1/2
T ).

In particular, if x1,0 = x2,0 and m1 = m2, then we obtain the uniqueness of the solution.
3. For every solution (x, j, l) with initial data x0 ∈ D (ϕ) and singular input dm(t), the mapping
(x0,m)→ x : D (ϕ)× C

(
[0, T ] ;Rd

)
→ C([0, T ] ;D (ϕ)) is continuous.

5.3 Stochastic variational inequalities with Clarke subdifferential

We consider the stochastic variational inequality

(56)

{
dXt + ∂ϕ (Xt) dt+ ∂Cφ (Xt) dt+G(t,Xt)dt 3 Q(t,Xt)dBt, t ∈ [0, T ] ,

X0 = ξ ∈ D (ϕ).

where φ satisfies the assumptions (49) and G satisfies condition (51). We assume also that
Q (., ., x) : Ω × [0, T ] → Rd×k is a Carathéodory function and satisfies the following conditions:
there exists ` ∈ L2

loc (R+) such that

(57)


|Q (t, x)−Q (t, y)| ≤ ` (t) |x− y| , ∀x, y ∈ Rd (Lipschitz condition),∫ T

0

|Q (t, 0)|2 dt <∞, P− a.s. ω ∈ Ω (boundedness condition).

We introduce below the notion of solution for the stochastic variational inequality (56).
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Definition 40 A quadruple (X, J,K, β) of Rd−valued stochastic processes is a solution of (56) if the
following conditions are satisfied, P− a.s. ω ∈ Ω, for evert T > 0 :

d1) X, J,K, β ∈ S0
d [0, T ] , J0 = K0 = 0,

d2) Xt ∈ D (ϕ), a.e., ljlT <∞ and lKlT <∞,
d3) βt ∈ G (t,Xt) , a.e.,

d4) Xt + Jt +Kt + βt = ξ +

∫ t

0

Q (s,Xs) dBs, ∀t ≥ 0,

d5)

∫ t

s

φo (Xr, v (r)) ≥
∫ t

s

〈dKr, v (r)〉 , ∀v ∈ C
(
[0, T ] ,Rd

)
, ∀0 ≤ s ≤ t ≤ T,

d6)

∫ t

s

〈y (r)−Xr, dJr〉+

∫ t

s

ϕ (Xr) dr ≤
∫ t

s

ϕ (y (r)) dr,

∀y ∈ C
(
[0, T ] ,Rd

)
, ∀0 ≤ s ≤ t ≤ T.

Theorem 41 (Uniqueness) Let the assumptions (49), (51) and (57) be satisfied and suppose that (X, J,K, β) ,

(X̂, Ĵ , K̂, β̂) are two solutions of the SVI (56), corresponding, respectively, to the initial conditions
ξ, ξ̂ ∈ L0(Ω,F0,P;D (ϕ)). Letting p ≥ 1, if ξ = ξ̂, P− a.s. ω ∈ Ω, then

Xs = X̂s, Js = Ĵs, Ks = K̂s, βs = β̂s, for all s ∈ [0, T ] .

Proposition 42 Let ξ ∈ L0(Ω,F0, P ;D (ϕ)). If M ∈ S0
d [0, T ] , M0 = 0, then the stochastic differential

equation

(58)

{
dXt + ∂ϕ (Xt) dt+ ∂Cφ (Xt) dt+G(t,Xt)dt 3 dMt, t ∈ [0, T ] ,

X0 = ξ.

admits a unique solution (X, J,K, β) ∈ S0
d [0, T ]×S0

d [0, T ]×S0
d [0, T ]×L0

(
Ω;L1

(
[0, T ] ;Rd

))
. In the

particular case when the martingale M is an Itô integral (i.e. Mt =
∫ t

0
QsdBs), if there exist p ≥ 2 and

u0 ∈ int (Dom (∂ (ϕ))) satisfying

(59) E |ξ|p + E
(∫ T

0

|βt,u0| dt
)p

+ E
(∫ T

0

|Q (t, u0)|2 dt
)p/2

< +∞,

with βt,u0 ∈ G (t, u0), then

(X,K, β) ∈ Spd [0, T ]× (S
p/2
d [0, T ] ∩ Lp/2(Ω;BV

(
[0, T ] ,Rd

)
))× Lp

(
Ω;L1

(
[0, T ] ;Rd

))
.

Theorem 43 If assumptions (49,), (51) and (57) are satisfied, then the SVI (56) has a unique solution
(X, J,K, β) ∈ S0

d [0, T ] × (S0
d [0, T ])

2 × L0
(
Ω;L1

(
[0, T ] ;Rd

))
. Moreover, if there exist p ≥ 2 and

u0 ∈ int (Dom (∂ϕ)) such that, for all T ≥ 0,

(60) E |ξ|p + E
(∫ T

0

|βt,u0| dt
)p

+ E
(∫ T

0

|Qt|2 dt
)p/2

< +∞,

then (X,K) ∈ Spd [0, T ]× (S
p/2
d [0, T ] ∩ Lp/2

(
Ω;BV

(
[0, T ] ,Rd

))
).
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6 Annex

6.1 Absolutely continuous and bounded variation functions

We present in this section some definitions and important results concerning absolutely contin-
uous and bounded variation functions (for more details see Brézis [10]).

6.2 A priori estimates for the generalized Skorohod problem

We give four lemmas with a priori estimates of the solution (x, k) ∈ SP (H∂ϕ;x0,m) . These
lemmas and also their proofs are similar with those from the monograph of Pardoux & Răşcanu
[41]. The three first lemmas are used to prove the main key Lemma 47.

Lemma 44 Let the assumptions (6), (7), (5) and (9) be satisfied. If (x, k) ∈ SP (H∂ϕ;x0,m) , then for
all 0 ≤ s ≤ t ≤ T :

(61)
mx (t− s) ≤

[
(t− s) + mm (t− s) +

√
mm (t− s) (lklt − lkls)

]
× exp {C [1 + (t− s) + (lklt − lkls + 1) (lklt − lkls)]} ,

where C = C (b, c, L) > 0.

Lemma 45 Let the assumptions (6), (7), (5) and (9) be satisfied. If (x, k) ∈ SP (H∂ϕ;x0,m) , 0 ≤ s ≤
t ≤ T and

sup
r∈[s,t]

|x (r)− x (s)| ≤ 2δ0 =
ρ0

2bc
∧ ρ0 , with ρ0 =

r0

2 (1 + r0 + h0)
,

then

(62) lklt − lkls ≤
1

ρ0

|k (t)− k (s)|+ 3L

ρ0

(t− s)

and

(63) |x (t)− x (s)|+ lklt − lkls ≤
√
t− s+ mm (t− s)× eCT (1+‖m‖2T ),

where CT = C (b, c, r0, h0, L, T ) > 0.

Lemma 46 Let the assumptions (6), (7), (5) and (9) be satisfied. Let (x, k) ∈ SP (H∂ϕ;x0,m) , 0 ≤ s ≤
t ≤ T and x (r) ∈ Dδ0 , for all r ∈ [s, t]. Then

lklt − lkls ≤ L

(
1 +

2

δ0

)
(t− s)

and
mx (t− s) ≤ CT × [(t− s) + mm (t− s)] ,

where CT = CT (b, c, r0, h0, L, T ) > 0.

Lemma 47 Let the assumptions (6), (7), (5) and (9) be satisfied and (x, k) ∈ SP (H∂ϕ;x0,m) . There
exists a positive constant CT (‖m‖T ) = C (x0, b, c, r0, h0, L, T, ‖m‖T ) , increasing function with respect
to ‖m‖T , such that, for all 0 ≤ s ≤ t ≤ T :

(64)
(a) ‖x‖T + lklT ≤ CT (‖m‖T ) ,

(b) |x (t)− x (s)|+ lklt − lkls ≤ CT (‖m‖T )×
√
µm (t− s).
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6.3 Useful inequalities

This section provides some useful deterministic and stochastic inequalities which are used in
our studies, mainly in Chapter 2, Chapter 3 and Chapter 4.

6.3.1 Deterministic and forward case inequalities

Proposition 48 Let x ∈ BVloc
(
[0,∞);Rd

)
and V ∈ BVloc ([0,∞);R) be continuous functions. Let R,

N : [0,∞)→ [0,∞) be two continuous increasing functions. If

〈x (t) , dx (t)〉 ≤ dR (t) + |x (t)| dN (t) + |x (t)|2 dV (t)

as signed measures on [0,∞), then for all 0 ≤ t ≤ T,

(65)
∥∥e−V x∥∥

[t,T ]
≤ 2

[∣∣e−V (t)x (t)
∣∣+

(∫ T

t

e−2V (s)dR (s)

)1/2

+

∫ T

t

e−V (s)dN (s)

]
.

If R = 0 then, for all 0 ≤ t ≤ s,

(66) |x(s)| ≤ eV (s)−V (t)|x(t)|+
∫ s

t

eV (s)−V (r)dN(r).

Recall, from Pardoux & Răşcanu [41], an estimate on the local semimartingale X ∈ S0
d of the

form

(67) Xt = X0 +Kt +

∫ t

0

GsdBs, t ≥ 0, P− a.s. ω ∈ Ω,

where K ∈ S0
d , K ∈ BVloc

(
[0,∞);Rd

)
, K0 = 0, P− a.s. ω ∈ Ω and G ∈ Λ0

d×k.

For p ≥ 1 denote mp
def
= 1 ∨ (p− 1) and we have the following result.

Proposition 49 Let X ∈ S0
d be a local semimartingale of the form (67). Assume there exist p ≥ 1 and V

a P−m.b-v.c.s.p., V0 = 0, such that as signed measures on [0,∞[:

(68) 〈Xt, dKt〉+
1

2
mp |Gt|2 dt ≤ |Xt|2dVt, P− a.s. ω ∈ Ω.

Then, for all δ ≥ 0, 0 ≤ t ≤ s, we have that

(69) EFt

∣∣e−VsXs

∣∣p(
1 + δ |e−VsXs|2

)p/2 ≤
∣∣e−VtXt

∣∣p(
1 + δ |e−VtXt|2

)p/2 , P− a.s. ω ∈ Ω.

Proposition 50 Let X ∈ S0
d be a local semimartingale of the form (67). Assume there exist three

P−measurable, increasing, continuous, stochastic processes D,R,N, p ≥ 1 and a P−measurable, with
bounded variation, continuous stochastic process V , D0 = R0 = N0 = V0 = 0, such that, as signed
measures on [0,∞[, P− a.s. ω ∈ Ω,

dDt + 〈Xt, dKt〉+ (
1

2
mp + 9pλ) |Gt|2 dt ≤ 1p≥2dRt + |Xt|dJt + |Xt|2dVt.
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Then, for all 0 ≤ t ≤ s, we have, P− a.s. ω ∈ Ω,

(70)
EFt ||e−VX||p[t,s] + EFt

∫ s

t

e−pVr |Xr|p−2dDr + EFt

(∫ s

t

e−2Vr(dDr + |Gr|2dr)
) p

2

≤ Cp,λ

[
e−pVt |Xt|p + EFt

(∫ s

t

e−2Vr1p≥2dRt

) p
2

+ EFt

(∫ s

t

e−VrdNr

)p]
.

6.3.2 Backward case inequalities

We shall derive some important estimations on the stochastic processes (Y, Z) ∈ S0
d [0, T ] ×

Λ0
d×k (0, T ) satisfying for all t ∈ [0, T ], P− a.s. ω ∈ Ω,

Yt = YT +

∫ T

t

dKs −
∫ T

t

ZsdBs,

with K ∈ S0
d be such that K· (ω) ∈ BVloc

(
[0,∞);Rd

)
, P−a.s. ω ∈ Ω. For more details concerning

the results found in this section one can consult Section 6.3.4 from Pardoux and Răşcanu [41].
A fundamental inequality

Let (Y, Z) ∈ S0
d [0, T ]× Λ0

d×k (0, T ) satisfying an identity of the form

(71) Yt = YT +

∫ T

t

dKs −
∫ T

t

ZsdBs, t ∈ [0, T ] , P− a.s. ω ∈ Ω,

where K ∈ S0
d ([0, T ]) and K· (ω) ∈ BV

(
[0, T ] ;Rd

)
, P− a.s. ω ∈ Ω.

Assume there exist

• D,R,N - three progressively measurable increasing continuous stochastic processes with
D0 = R0 = N0 = 0,

• V - a progressively measurable bounded variation continuous stochastic process with
V0 = 0,

• 0 ≤ λ < 1 < p,

such that, as measures on [0, T ], P− a.s. ω ∈ Ω,

(72) dDt + 〈Yt, dKt〉 ≤
[
1p≥2dRt + |Yt|dNt + |Yt|2dVt

]
+
np
2
λ |Zt|2 dt,

where np
def
= 1 ∧ (p− 1). Proposition 6.80 from Pardoux and Răşcanu [41] yields the following

important result.
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Proposition 51 If (71) and (72) hold, and moreover

E
∥∥Y eV ∥∥p

T
<∞,

then there exists a positive constant Cp,λ, depending only upon (p, λ) , such that, P − a.s. ω ∈ Ω, for all
t ∈ [0, T ],

(73)

EFt sup
s∈[t,T ]

∣∣eVsYs∣∣p + EFt

(∫ T

t

e2VsdDs

)p/2
+ EFt

(∫ T

t

e2Vs |Zs|2 ds
)p/2

+EFt

∫ T

t

epVs |Ys|p−2 1Ys 6=0dDs + EFt

∫ T

t

epVs |Ys|p−2 1Ys 6=0 |Zs|2 ds

≤ Cp,λ EFt

[∣∣eVTYT ∣∣p +

(∫ T

t

e2Vs1p≥2dRs

)p/2
+

(∫ T

t

eVsdNs

)p]
.

In addition, if R = N = 0, then, for all t ∈ [0, T ],

(74) epVt |Yt|p ≤ EFtepVT |YT |p , P− a.s. ω ∈ Ω.

Proposition 52 (See Proposition 6.69 from [41]) Let δ ∈ {−1, 1} and consider Y,K,A : Ω× R+ →
R and G : Ω× R+ → Rk four progressively measurable stochastic processes such that

i) Y,K,A are continuous stochastic processes,
ii) A·, K· ∈ BVloc ([0,∞[ ;R) , A0 = K0 = 0, P− a.s. ω ∈ Ω,

iii)

∫ s

t

|Gr|2 dr <∞, P− a.s. ω ∈ Ω, ∀0 ≤ t ≤ s.

If, for all 0 ≤ t ≤ s,

δ (Yt − Ys) ≤
∫ s

t

(dKr + YrdAr) +

∫ s

t

〈Gr, dBr〉 , P− a.s. ω ∈ Ω,

then
δ
(
Yte

δAt − YseδAs
)
≤
∫ s

t

eδArdKr +

∫ s

t

eδAr 〈Gr, dBr〉 , P− a.s. ω ∈ Ω.

6.4 Tightness results

The next results (found in the monograph [41]) are mainly used in Chapter 2 and Chapter 3 and
are useful tools when we prove the existence of some weak solutions for our equations.

Proposition 53 Let {Xn
t : t ≥ 0}, n ∈ N∗, be a family of Rd−valued continuous stochastic processes

defined on probability space (Ω,F ,P). Suppose that, for every T ≥ 0, there exist α = αT > 0 and
b = bT ∈ C (R+) with b(0) = 0 (both independent of n), such that

(i) lim
N→∞

[
sup
n∈N∗

P({|Xn
0 | ≥ N})

]
= 0,

(ii) E
[
1 ∧ sup

0≤s≤ε

∣∣Xn
t+s −Xn

t

∣∣α] ≤ ε · b(ε), ∀ ε > 0, n ≥ 1, t ∈ [0, T ] .

Then {Xn : n ∈ N∗} is tight in C(R+;Rd).
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Proposition 54 Let X, X̂ ∈ S0
d [0, T ] and B, B̂ be two Rk−Brownian motions and g : R+×Rd → Rd×k

be a function satisfying
g (·, y) is measurable ∀ y ∈ Rd, and

y 7→ g (t, y) is continuous dt− a.e..

If
L (X,B) = L(X̂, B̂), on C(R+,Rd+k),

then
L
(
X,B,

∫ ·
0

g (s,Xs) dBs

)
= L

(
X̂, B̂,

∫ ·
0

g
(
s, X̂s

)
dB̂s

)
, on C(R+,Rd+k+d).

Lemma 55 Let g : R+ → R+ be a continuous function satisfying g (0) = 0 and G : C
(
R+;Rd

)
→ R+

be a mapping which is bounded on compact subsets of C
(
R+;Rd

)
. Let Xn, Y n, n ∈ N∗, be random

variables with values in C
(
R+;Rd

)
. If {Y n : n ∈ N∗} is tight and, for all n ∈ N∗,

(i) |Xn
0 | ≤ G (Y n) , a.s.,

(ii) mXn (ε; [0, T ]) ≤ G (Y n) g (mY n (ε; [0, T ])) , a.s., ∀ ε, T > 0,

then {Xn : n ∈ N∗} is tight.

Lemma 56 Let B, Bn, B̄n : Ω × [0,∞) → Rk and X , Xn, X̄n : Ω × [0,∞) → Rd×k be continuous
stochastic processes such that

(i) Bn is FB
n,Xn

t − Brownian motion, for all n ≥ 1,

(ii) L(Xn, Bn) = L
(
X̄n, B̄n

)
on C(R+,Rd×k × Rk), for all n ≥ 1,

(iii)

∫ T

0

∣∣X̄n
s − X̄s

∣∣2 ds+ sup
t∈[0,T ]

∣∣B̄n
t − B̄t

∣∣ −→ 0 in probability, as n→∞, for all T > 0.

Then (B̄n, {F B̄
n,X̄n

t }), n ≥ 1, and (B̄, {F B̄,X̄t }) are Brownian motions and, as n→∞,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

X̄n
s dB̄

n
s −

∫ t

0

X̄sdB̄s

∣∣∣∣ −→n→∞ 0, in probability.
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